
Nodle Network.

Smart Missions Paper

A new generation of smart contracts 
for the mobile computing platform

Connecting Web3 to 
the Physical World: 
Nodle’s Smart Missions



The past years spent developing Nodle were essential to 
assemble the building blocks of the ecosystem. Reaching many 
significant milestones:

Releasing the first Proof of 
Concept of the network 
on the Stellar Network, 
with native support on the 
HTC Exodus 1 and 1s, the 
blockchain phones from 
HTC..

Nodle was among the first 
teams to launch a full-
production blockchain 
built with Parity Substrate.

The project migrated from 
its solo chain to the 11th 
parachain slot on the 
Polkadot Network, leading 
the way of innovation 
before many others would 
take a similar path.

May 
2022

June 
2020

December 
2018

Foreword

01



At the same time, the network has been constantly optimized 
and hardened against potential threats. In addition, the rewards 
formula and system have been improved to incentivize network 
growth and become more transparent, thus providing better 
economic guarantees to NODL token holders.



The Nodle App, which has been a critical component since day 
one, showcases the network's capabilities, allowing users to 
experience the power of Nodle. In 2018 it was one of few Stellar-
compatible wallets, and when the Nodle chain launched in 2020, 
it also became the third mobile wallet to support Parity 
Substrate / Polkadot.



The team behind Nodle are outliers, forethinkers, and innovators. 
Even if developments started five years ago, the work is just 
beginning. A fascinating fact is that as the network expands, it 
becomes increasingly valuable to builders worldwide. This is 
why new capabilities are being introduced today as Smart 
Missions (also referred to as “Missions” below).



Smart Missions are the core primitive of the Nodle Network. It 
allows anyone to program the network's swarm of smartphones 
and devices to execute a custom piece of code or action for a 
given context. It makes the network programmable, meaning 
that developers and builders can come in and easily create 
applications on top of the Nodle infrastructure in exchange for a 
fee in NODL tokens. New features and products will be built 
through Smart Missions such as asset tracking, data collection, 
security checks, geographic NFT airdrops, social networking, or 
referrals.



The Nodle team is already building additional capabilities and 
Smart Missions use cases, showcasing the network's potential. 
Third-party builders will create more services on top of the 
network for their ideas and products.

02



Foreword 


Table of contents 


What is a Smart Mission? 









Economics 


Examples 





Future tracks

Bird's eye view 


Difference with Existing Systems 


Builder Ecosystem 


Mobile VM API 


Chain Runtime Extensions 


Standard Mission Interface 


Nodle VM Inner Workings




Asset tracking 


Geographic airdrops


Proof of Participation



Nodle.JS 


Mission browser in Nodle App


Mission libraries

03

01

04

06

11

18

09

12

19

09

13

21

15

23

25

16

25

26

26

Table of 
contents



Other applications, use cases, or features are 
built as Smart Missions.

Smart Missions 
are the “primitive” 
of the Nodle 
Network. 

04



This is possible because of the combination of various pieces 
of technology:

The Nodle SDK.

The Nodle Parachain and Parity Substrate.

The Nodle Virtual Machine (VM).

 Deployed within mobile applications across 
hundreds of thousands of devices, it allows the Nodle Network 
to communicate with the real world by using smartphones 
running the SDK1.



 Acts as the nervous 
system that links the multiple components of the Nodle 
Network together and handles settlements (i.e., payments) for 
usage on the network.



 A common and standardized 
system to represent and run scripts across various mobile 
platforms with reasonable performance and maximum security. 1 For privacy and security 

reasons, SDK-enabled 
nodes should be able to 
filter out what commands 
they accept from the 
network. This can be done 
at the SDK integrator level, 
or at the level of the Node 
Operator, which operates 
fleets of SDKs.

05



2 In the case of the Nodle 
App and similar solutions, 
the user is in control and 
might choose by 
themselves missions they 
want to run.

A Smart Mission is composed of two main components:










The Nodle Parachain maintains a registry of Smart Missions that 
are deployed by builders that want to use the network’s 
resources. The chain code portion of a Smart Mission exposes 
standardized APIs (the “Standard Mission Interface”). This is 
similar to Ethereum’s ERC standards which create standardized 
calls and APIs for special smart contracts like tokens. These 
standardized calls are used to identify and classify each Smart 
Mission before they are deployed to Nodle SDK instances.



Nodle SDKs2 do not query the parachain directly. Instead, they 
rely on another server, a Node Operator, which manages a fleet 
of SDKs. The Node Operator knows which SDKs are online and 
select which Smart Missions should be deployed to which SDK 
instances. It might also enforce its own security, economics, or 
compliance requirements on such missions and their builders.

The first one runs on devices at the edge with the Nodle 
SDK that embeds an implementation of the Nodle VM, 
let’s call it the device code.



The second one runs on the Nodle Parachain in the form 
of a Wasm smart contract; let’s call it the chain code.

Bird’s eye 
view

06



The device code is downloaded by Node Operators and
deployed to their fleet of Nodle SDKs, which may execute it. 
When executed, the device code has access to a variety of APIs
exposed by the Nodle VM environment (the “MobileVM API”) 
and can run the necessary computing defined by the mission 
builder. It also has the ability to call back into the chain code 
with an arbitrary set of parameters. These parameters will very 
often be a “proof”: a piece of data that the chain code can 
verify, or an “attestation”: evidence of a certain fact; or may 
simply rely on a centralized oracle. The chain code will verify this
data and unlock some assets as compensation for the Node 
Operator or Nodle App user.



The Nodle Network will expect device codes to be stored on the
InterPlanetary File System3 (IPFS). IPFS has proven itself as a 
reliable and decentralized file storage network. It is well-
adopted within the Web3 industry to host pictures of collectible
cats or monkeys for non-fungible tokens, websites, and more. In
fact, it is already used across the Nodle Parachain to support 3 https://ipfs.tech/

Nodle 
Parachain

Actors

Mission Builder 1

Node Operator 1 Node Operator 2

SDK 3 SDK 5SDK 2 SDK 4SDK 1

Node Operator 3

Mission Builder 2

Deploys Deploys Deploys

ListensListens

Deploys mission 1 Deploys mission 2

Listens

Skip Skip

07



mobile-generated NFTs. IPFS associates each document on the 
network with a unique identifier in the form of a cryptographic 
hash. This allows the chain code to indicate which device code 
needs to be run to participate in the mission. Because the 
device code is identified by its hash, this also allows Node 
Operators to verify that they are manipulating the correct and 
untampered device code.



Initial implementations of the Nodle VM support a custom 
scripting language optimized to be safe, memory efficient, and 
simple to use. The chain code will be run via Parity Substrate’s 
contracts4 pallet or a variant, and support the ink!5 domain-
specific language (based on the rust language with some extra 
syntactic sugar), or any other language that compiles to Wasm 
with the correct APIs exposed, such as ask!6 (which uses 
AssemblyScript7, a TypeScript-like language for Wasm).



For security and transparency purposes, a Smart Mission needs 
to specify a set of permissions required to run its device code. 
When a mission’s device code is run, the Nodle VM is in charge 
of enforcing these permissions. This can also be used by Node 
Operators to filter out which Smart Missions they are willing to 
support or to better represent a mission’s needs and accesses 
to a Nodle App user.

4 https://github.com/
paritytech/substrate/tree/
master/frame/contracts

5 https://ink.substrate.io/

6 https://ask-lang.github.io/
ask-docs/

7 https://
www.assemblyscript.org

Node Operator

SDK

Mission

Listens to mission 
deployments

Device code comes from 
the SDK’s node operator?

Chain code deployed 
on Parachain

Passes internal filters? 
(Compliance, whitelists...)

Run the device code

Device code on IPFS
Economically viable?


(Rewards, nodes available...)

Calls back into the chain 
code on the Parachain

Deploy to SDK fleet

Yes

Yes

Yes

YesYes

Yes

08

https://github.com/paritytech/substrate/tree/master/frame/contracts 
https://github.com/paritytech/substrate/tree/master/frame/contracts 
https://github.com/paritytech/substrate/tree/master/frame/contracts 
https://ink.substrate.io/ 
https://ask-lang.github.io/ask-docs/
https://ask-lang.github.io/ask-docs/
https://www.assemblyscript.org
https://www.assemblyscript.org


One will notice some similarities between Smart Missions and 
other systems, such as existing Decentralized Applications 
(DAPPs) platforms like Ethereum and Solana, or various 
distributed computing platforms.



It is key to understand that these other platforms were designed 
to either support verifiable (Smart Contracts) or high-
performance computing applications. Nodle is different, Smart 
Missions are a way to develop Web3 applications that interact 
with the real world. Meaning that one can write a piece of code 
designed to be executed on a remote device such as a 
smartphone and which may interact with surrounding Bluetooth 
devices or perform an arbitrary task with access to the device’s 
sensors such as GPS, camera, or accelerometer.



In that sense, Nodle isn’t a DAPP platform, but rather a bridge 
between the real and digital worlds.


When creating a platform where builders and developers can 
deploy and run code, builder experience is key. Builders will 
need strong support for the tools they already use such as their 
code editor, debugger, or linter.

Difference with 
Existing Systems

Builder 
Ecosystem

09



Builders will want to test their Smart Missions in a production-like 
environment and on physical Nodle-enabled devices. This is 
where the Nodle App comes in. The Nodle App is a special way 
to run the Nodle SDK while offering its users more control. The 
Nodle App can download and run Smart Missions selected by its 
user, whereas most other apps with the Nodle SDK will delegate 
this responsibility to a third party. Indeed, Node Operators are 
accountable for enforcing privacy regulations such as the CCPA 
and the GDPR; they will select which Smart Missions can run on 
the nodes under their responsibility. The Nodle App will then play 
a critical role as a development tool for builders and as the 
primary way to interact with Smart Missions targeting end-users.



The builder should be able to use the Nodle App to scan a QR 
Code on their computer, instructing it to download the Smart 
Mission’s device code and seamlessly run it for testing purposes. 
This simple development will make it much easier for builders to 
test their missions in production-like conditions or share them 
with people. Over time, the Nodle App will provide statistics, 
additional options, and APIs to help debug the Smart Mission.


10



It was previously mentioned that the Nodle VM gave access to 
various APIs on the hosting device. Indeed, a mission needs to 
interact with the outside world by accessing data from the 
Bluetooth chipset or local details like the user’s wallet address. 
It also needs a way to call back into the chain code to trigger 
its compensation. These APIs can be exposed directly inside 
the VM.



The following calls will be supported by the Nodle VM:


Bluetooth Low Energy APIs:

Wallet and Parachain addresses:

Attestation:

Callback:

Internet access:

 broadcasting of beacons in various 
formats, scanning of nearby devices, GATT queries…



 will offer separate calls to 
query the host’s address, the SDK integrator address, or the 
mission chain code’s address



 will rely on the SDK’s built-in protection 
mechanisms and its interactions with the Nodle Node Operator 
to return an attestation that the SDK is running on a device 
considered genuine.



 given an arbitrary set of parameters and a chain code 
address, this will trigger a call back to the Nodle Parachain.



 if the device code was granted the appropriate 
permissions, it should be able to communicate with a remote 
server hosted somewhere else on the Internet. This could take 
the form of a normal HTTP request or more complex networking 
schemes.

Mobile 
VM API

11



The chain code is the component the device code calls back 
into. The chain code takes the form of a Wasm Smart Contract 
running on the Nodle Parachain. As such, it can access various 
on-chain primitives which will allow mission builders to create 
new use cases, economics, and reward mechanisms:

Native NODL transfers:

Third-party assets:

Non Fungible Tokens (NFTs):

Mission Registry:

Interoperability primitives (XCM):

 allows checking one’s balance, 
transferring tokens held in the chain code contract, requesting 
payments in NODL, etc.



 allows creating and managing a new token, 
transferring tokens held in the chain code contract, requesting 
payments with third-party assets, etc.



 used to issue or request NFTs 
present on the Nodle Parachain.



 allows querying the registry for currently 
deployed missions and their metadata or deploying a new 
Smart Mission.



 supports calling functions on 
other parachains and sending tokens or other assets across the 
Polkadot network.

Chain Runtime 
Extensions

12



Each Smart Mission’s chain code must expose a set of 
functions and storage values that Node Operators will use to 
filter out which Smart Mission they will execute8, and by the 
Nodle App to correctly classify each Smart Mission. While this 
interface will further be defined as the network continues being 
developed some basic requirements can already be highlighted:















A short name



A longer form description



Some logos to be displayed on various frontends



Links to the developer’s website for more 
information



The type and amount of rewards one collects, such 
as a certain amount of tokens, or special NFTs



The Smart Mission’s high-level category such as 
whether it is an asset tracking mission or a positional 
mission which is restricted to a certain area


A function that returns the IPFS document hash identifying 
the associated device code. This allows Node Operators 
and Nodle App instances to download the appropriate 
code to perform the Smart Mission. As covered previously 
in the Bird’s Eye View, every device code needs to be 
made available through IPFS.



A function that returns the IPFS document hash of a 
metadata file. Such metadata shall include:


8 It is assumed that each 
Node Operator might also 
have its own logic to 
choose which mission to 
deploy and where. For 
instance, they might 
perform static analysis, or 
require special whitelisting 
logics for certain usage 
scenarios.


Standard Mission 
Interface

13



Depending on the metadata registered or the requirements of 
the device code, Node Operators might use their own 
algorithms to decide whether a Smart Mission should be 
supported by them and if so, do it in the most optimal manner. 
For instance, a geographically bounded mission shouldn’t be 
sent to a smartphone that is too far away from the target area 
but could still be downloaded ahead of time as the user gets 
closer to the target area.



It is expected that the Nodle App will obey the Nodle Node 
Operator operated by the team, especially for asset tracking 
missions as they can be executed passively. However, it should 
also let the user specify its filters or select missions manually9, 
which would be quite convenient for Smart Missions that require 
an action from the end user. This could be the case for a 
mission that requires the user to go to a specific place or 
perform a special action.

9 Going forward, it will be 
assumed that this 
statement is implicit 
whenever Node Operators 
or Nodle SDKs are 
discussed.

Depending on the Smart Mission’s category, the 
metadata should contain additional parameters:



For asset tracking, it should contain a target filter 
which filters what kind of devices the developer is 
looking for as well as an optional geographic bound.



For positional missions, the developer must specify 
the geographic bound in which the mission is 
available.

Nodle VM requirements, such as the memory 
necessary for the execution of the device code.



Permission requests that clearly highlight the access 
offered to the device code during its execution. 
When the device code is run, the Nodle SDK should 
configure the Nodle VM to only allow the requested 
permissions.

14



10 https://www.antlr.org/

11 https://webassembly.org/

15

The Nodle VM is a key component of the Smart Missions 
system; it is in charge of exposing the Mobile VM API to the 
device code in a sandboxed environment. At first, it will be 
backed by a simplified scripting language built with ANTLR10. 
This language will be generic enough to support the first 
missions running on the Nodle Network by expressing 
conditions, filters, and calls to sub-modules of the Nodle SDK.



As the ecosystem’s needs arise and evolve, it will be necessary 
to extend the Nodle VM with more general capabilities and 
possibilities for builders. As such, it is intended to embed a Web 
Assembly (Wasm)11 interpreter within the Nodle SDK. Because 
Wasm is a well-defined, battle-tested, binary instruction format 
and VM, it will mean that builders can easily develop missions 
using the tooling of their choice. The usage of a Wasm-based 
VM will allow the Smart Missions to natively support standard 
languages used by millions of developers across the globe: 
JavaScript, Golang, Rust, C, and more… Because of this, it will 
reduce the need for customized cooling such as testers, linters, 
and debuggers; thus allowing the team behind Nodle to focus 
on their core innovation: bridging the gap between the physical 
and digital worlds.



It was chosen to start with a simplified scripting language to 
better start the inherent Nodle VM and put it in the hands of the 
Nodle community and builders faster. Ultimately, each Node 
Operator should be able to have their own Nodle VM stack; 
thus, both formats could and should be able to co-exist. It will 
allow builders to use the tools that best fit their needs on a 
case-by-case basis, but also increase the pace of innovation 
and experimentation within the Nodle ecosystem. Indeed, new 
Node Operators could be launched with limited SDK fleets to 
experiment with new VM implementations or technologies in 
the future; thus not locking Nodle behind one technical choice.



Nodle VM Inner 
Workings

https://www.antlr.org/
https://webassembly.org/ 


Economics

A Web3 protocol is only as secure as its weakest component. 
While it is desirable to support the maximum missions possible, 
this needs to be done in a way that respects the network’s 
capacity. Meaning that the network shouldn’t have more 
missions than it can handle being deployed at any time. 
Therefore, the following mechanisms must be implemented:

Deployment fee:

State rent:

Transaction fees:

 a dynamic fee system that scales up the cost to 
deploy a mission depending on the current network usage. A 
simple solution could be to rely on a constant maximum number 
of missions and a polynomial function that outputs the fee for the 
next mission deployment should be sufficient for a first 
implementation. The NODL used to pay this fee is partially sent to 
the DAO treasury and partially burned, thus reducing the 
maximum supply of the network.



 an incentive for builders to “self-destruct” their Smart 
Missions once they are no longer relevant. This is done by asking 
them to lock a certain amount of NODL to be refunded to them 
once the mission’s chain code self-destructs. Thus freeing the 
resources used by the network to support it.



 just like any transaction on the Nodle 
Parachain, deploying a new Smart Mission or interacting with one 
will also come at a small cost in the form of NODL tokens which 
are to be split between the block creator and the DAO treasury.

16



A Smart Mission must be deployed with its internal incentives to 
ensure Node Operators and Nodle App users are properly 
rewarded for their work. If a mission is deployed without internal 
incentive schemes like tokens or NFT payments, it is likely that it 
won’t be picked up by a Node Operator or Nodle App user.

Fees

Transaction Fee

Deployment Fee Burn

State Rent Fee

Mission Deployment DAO Treasury

Refunded to 
deployer upon 
self destruction

17



Examples

The inner workings of the Nodle Missions will be explored 
through a series of fictional examples which match real-world 
needs. The beauty of the system lies in its inherent simplicity 
and flexibility. Indeed, each mission developer can code the 
guarantees they want for their Smart Missions. For instance, one 
could decide they are fine with lower trust location proofs, while 
other builders might ask for multiple proofs or confirmations 
before unlocking rewards to the mission participants.



The Nodle Network does not provide any strong “proof of X'' 
primitive. Instead, it lets builders define their criteria and set the 
threshold of what their mission is willing to pay for. Node 
Operators or Nodle App users can select what they are willing 
to run on their devices and be compensated appropriately 
following traditional free market dynamics.



The examples below will focus on highlighting various 
mechanics of the Nodle Network and its Smart Missions in a

simple manner. This means that most production deployments 
would likely require slightly stronger guarantees or different 
configurations.

18



Asset Tracking Limited (a fictional company for the purpose of 
this example) wants to find its devices across the city of New 
York. They are willing to pay 10 NODL for each successful ping 
from the network. To do so, they deploy a new mission 
composed of the following components:

















Asset Tracking Limited will deploy this Smart Mission by 
deploying the chain code on the Nodle Parachain and paying 
the appropriate fees described in Economics, and preloading it 
with enough tokens to support the necessary pings. Right as 
the chain code gets instantiated, other actors of the Nodle 
Network perform a series of actions:


A device code that listens to BLE scans from the Nodle 
SDK. For each asset found from Asset Tracking Limited, it 
will send it to the company server and collect a “receipt,” 
which is then submitted to the Nodle Parachain to unlock 
the appropriate compensation12.



A chain code that receives receipts (which are merely 
signed sequences of bytes) and unlocks the hardcoded 
compensation of 10 NODL.



The associated metadata identifies the mission to be part 
of the asset tracking category and to be restricted to the 
city of New York.

The Nodle Parachain collators should pin13 the device code 
and metadata IPFS documents on their server.



The Node Operators listen to the Nodle Parachain and 
detect that a new mission is instantiated. They fetch the 
chain code, the device code, and its metadata.


01




02


12 For real-world production 
use-cases an escrow 
system might be 
necessary to lower the 
trust requirements. For the 
sake of this paper, the 
requirements have been 
simplified to focus on the 
inner workings of the 
Missions system itself.

13 In IPFS terminology, 
pinning simply means 
downloading a file to one’s 
local node and making it 
available to other network 
participants.

Asset 
tracking

19



14 This transaction will most 
likely go through the Node 
Operator. The Nodle SDK 
will notify the Node 
Operator of the transaction 
to be sent via an internal 
API. In the case of the 
Nodle App, it would send 
the transaction using the 
user’s wallet, either in the 
background or after asking 
the user for its approval.

Whenever a Nodle SDK detects a device from Asset Tracking 
Limited as instructed by its Node Operator and the mission’s 
metadata, it will call into the Smart Mission’s device code. The 
device code will perform its normal sequence of operations. In 
this example, it reports the device identifier, the device’s GPS 
position, and an eventual attestation that it is a genuine Nodle 
SDK to the company’s server. The server then replies with a 
signed receipt that can then be used to claim the token 
payment from the chain code14.



If the mission runs out of tokens to pay out devices, Asset 
Tracking Limited might reprovision it with additional tokens. 
The company might also decide to deactivate the mission 
once they no longer need it or if it runs out of funds. If it so 
wishes, it would trigger the appropriate transaction which 
would have the following chain reaction:


Once the Smart Mission is downloaded, the Node 
Operator will filter it through its proprietary logic to define 
whether it wants to run it. Typically, it will look for whether 
they have devices in New York and whether it satisfies its 
restrictions. Such restrictions might cover which 
developers are allowed to track which kind of devices.



If the Node Operator is willing to support the smart 
mission, it will look for devices close to or in New York, 
and load them with the appropriate device code.

The chain code would be marked as uninstalled on the 
Nodle Parachain, thus reducing the state size to be 
maintained by its collators. If necessary, the chain code 
might send any funds left back to its deployer, Asset 
Tracking Limited.



The Node Operators listen to the Nodle Parachain and 
detect that the mission was deactivated. They free the 
appropriate resources on their side and command their 
Nodle SDKs to uninstall the mission’s device code.

01







02

20

03








04



Modern Coffee LLC (a fictional company for the purpose of this 
example) wants to create a Smart Mission to attract new 
customers to their shops around Europe. They do not want to 
deploy one mission for each shop, instead, they will deploy one 
global mission that checks the user’s positioning and relies on 
the attestation mechanism described in MobileVM API to claim 
an NFT voucher which can be redeemed for a free coffee. To 
prevent users from abusing their marketing program and getting 
too many free coffees they will impose some restrictions 
checked by the chain code:













The user must have been awarded by the Nodle Network 
5 NODL, showing that they spent some time running the 
Nodle App. They want to ensure the 5 NODL were minted 
as network reward, and thus will not record Nodle tokens 
sent from another wallet15.



The user cannot claim the voucher NFT twice with the 
same account. To enforce this, the chain code records 
which account claimed an NFT and prevents double 
claiming.

15 To do this, the Nodle 
Parachain will need to 
record how many NODL 
are awarded to each user. 
This is a feature that is 
already being planned for a 
future release of the Nodle 
Parachain runtime.

Geographic 
airdrops

21



Because this is essentially a marketing program, they are 
satisfied with these guarantees and do not want to burden their 
customers with higher requirements.



Their Smart Mission deployment is very simple:

Once the marketing program is over, the Smart Mission can be 
deactivated by Modern Coffee LLC, which returns the state rent 
they had to deposit when deploying the Smart Mission. Node 
Operators detect the mission’s deactivation and inform the 
SDKs they manage to uninstall the mission from their VM.

Because the financial upside of a free coffee is rather 
limited, Node Operators will most likely ignore the 
mission. However, the mission will be available in the 
Nodle App where users can choose to install it before or 
when visiting a Modern Coffee LLC shop. Alternatively, it 
could be assumed that the mission is downloaded in the 
background if the application is configured appropriately 
by its users.



Additionally, Modern Coffee LLC locations could display a 
QR Code with a deep link to auto-install their mission, or 
embed it in their mobile application if they have one.

02










03

22

Their Smart Mission deployment is very simple:

A simple chain code that receives an attestation that 
a Nodle SDK instance is genuine. If this attestation is 
valid, it should double-check how many NODL the 
caller got awarded previously and whether it already 
minted a voucher NFT before minting it.



The device code is a bit more complex: it fetches an 
attestation that it is running on a genuine device and 
checks its position. If the device is at a known 
Modern Coffee LLC location, it sends the attestation 
to the chain code via a Nodle Parachain transaction.

01



Impactful Events Corp deploys a mission composed of the 
following parts:

Impactful Events Corp (a fictional company for the purpose of 
this example) is organizing an in-person event in the city of 
Prague. They want to airdrop a special NFT to each participant. 
They verify participation at the event through the deployment of 
custom software on their team’s tablets. This software makes 
the tablets broadcast special Bluetooth beacons, which can be 
exchanged for an NFT via the mission’s chain code.



This example follows a flow similar to the following:





16 In this scenario, it is 
expected that the Nodle 
App will ask for the user to 
confirm the installation of 
the mission to prevent 
security and privacy leaks.

In this case, most Node Operators will likely ignore the 
mission because the NFT’s financial value is unclear.



However, Nodle App users will see the Smart Mission on 
their application and can choose to install it themselves on 
their phones if they go to the event.



Additionally, Impactful Events Corp can send an email to 
the participants, or show a QR Code, which contains a 
deep link to install the mission directly in the Nodle App16.



Alternatively, Impactful Events Corp might own a mobile


The device code listens to the special beacons from 
the event, which contain a pre-computed secret 
from Impactful Events Corp’s team. It then sends it 
to the chain code deployed on the Nodle Parachain.



The chain code receives these secrets and verifies 
them. It mints a new NFT as part of the event’s 
collection if they are verified.

01

02




03





04





05

Proof of Participation

23



Once the event is over, Impactful Events Corp will deactivate the 
mission on the Nodle Parachain, thus freeing some of the NODL 
they had to lock as part of the state rent defined in Economics, 
and informing Node Operators to uninstall the mission from the 
SDKs they manage.


24

application that could embed the Nodle SDK and pre-
install their mission.



Future 
tracks
While Smart Missions are a great advancement, they will require 
additional tooling and integration within the stack to reach their 
true potential. Indeed, it will be necessary for builders to be able 
to integrate their frontends with their missions easily. On top of 
this, the Nodle App will need to become the prime way to 
interact with any kind of mission and be able to generalize 
extremely well to support the creativity of mission builders.

An easy way to build frontends interacting with the Nodle 
Network and its Smart Missions will be required to enable Smart 
Mission builders to create their frontends. Custom frontends are 
necessary to support builders in creating unforeseen use cases. 



Similarly to Web3.JS, Ethers, or Polkadot JS, a client library 
tentatively named Nodle JS will need to be developed. It will be a 
small library for front-end developers to easily interact with the 
network via their web or CLI applications. Additionally, Nodle JS 
will need to integrate with the user’s wallet extensions such as 
Talisman or Polkadot JS to be able to send transactions to the 
Nodle Parachain.



Nodle.JS

25



As more builders join the ecosystems and create Smart 
Missions, common needs and implementations will become 
easier to identify. Once this is possible, some teams could 
develop a common library of mission building blocks that 
make it even easier to write a mission with various libraries 
vetted by the community to generalize well, be optimized, 
and free of bugs.



This is similar to OpenZeppelin on Ethereum, or Substrate 
FRAME for Polkadot.


Mission 
libraries

The Nodle App will need to support an in-app browser so 
users can also interact with these more advanced Smart 
Missions through their preferred mobile Nodle wallet. It will be 
required for the app to inject a Polkadot JS-compatible object 
to allow the front end to ask for transactions to be sent to the 
Nodle Parachain.



This is similar to Web3 JS integrations featured by Metamask 
Mobile, Ledger Live, and many other web3 applications.


Mission browser 
in Nodle App

26



About Nodle

Nodle is a programmable network 
powered by smartphones, connecting 
the physical world to the internet and 
enabling unique geolocation applications.

Visit us at nodle.com.

http://www.nodle.com

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28



